Skip to Main content Skip to Navigation
Conference papers

Unsupervised Nuclei Segmentation using Spatial Organization Priors

Abstract : In digital pathology, various biomarkers (e.g., KI67, HER2, CD3/CD8) are routinely analyzed by pathologists through immunohistochemistry-stained slides. Identifying these biomarkers on patient biopsies allows for a more informed design of their treatment regimen. The diversity and specificity of these types of images make the availability of annotated databases sparse. Consequently, robust and efficient learning-based diagnostic systems are difficult to develop and apply in a clinical setting. Our study builds on the observation that the overall organization and structure of the observed tissues are similar across different staining protocols. In this paper, we propose to leverage both the wide availability of hematoxylin-eosin stained databases and the invariance of tissue organization and structure in order to perform unsupervised nuclei segmentation on immunohistochemistry images. We implement and evaluate a generative adversarial method that relies on high-level nuclei distribution priors through comparison with largely available hematoxylin-eosin stained cell nuclei masks. Our approach shows promising results compared to classic unsupervised and supervised methods, as we demonstrate on two publicly available datasets. Our code is publicly available to encourage further contributions.
Complete list of metadata
Contributor : Loïc Le Bescond Connect in order to contact the contributor
Submitted on : Wednesday, August 10, 2022 - 4:09:36 PM
Last modification on : Friday, August 26, 2022 - 2:53:05 PM


  • HAL Id : hal-03644463, version 2


Loïc Le Bescond, Marvin Lerousseau, Ingrid Garberis, Fabrice André, Stergios Christodoulidis, et al.. Unsupervised Nuclei Segmentation using Spatial Organization Priors. MICCAI 2022 - 25th International Conference on Medical Image Computing and Computer Assisted Intervention, Sep 2022, Singapore, Singapore. ⟨hal-03644463v2⟩



Record views


Files downloads