J. Bardina, J. Ferziger, and W. Reynolds, Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows, 1983.

M. Cannone, Ondelettes, paraproduits et Navier-Stokes, Diderot Editeur, Arts et Sciences, 1995.

B. Cantwell, Similarity transformations for the two-dimensional, unsteady, stream-function equation, Journal of Fluid Mechanics, vol.85, pp.257-271, 1978.

T. Eidson, Numerical simulation of the turbulent Rayleigh-Bénard problem using subgrid modelling, Journal of Fluid Mechanics, vol.158, pp.245-268, 1985.

C. Fureby and G. Tabor, Mathematical and physical constraints on large-eddy simulations, Theorical and Computational Fluid Dynamics, vol.9, issue.2, pp.85-102, 1997.

W. Fushchych and R. Popowych, Symmetry reduction and exact solutions of the Navier-Stokes equations I, Journal of Nonlinear Mathematical Physics, vol.1, issue.1, pp.75-113, 1994.

. Hereman, Review of symbolic software for the computation of Lie symmetries of differential equations, Euromath Bulletin, vol.1, issue.2, pp.45-79, 1994.

K. Horiuti, The role of the bardina model in large eddy simulation of turbulent channel flow, Physics of Fluids A, vol.1, issue.2, pp.426-428, 1989.

N. Ibragimov, CRC handbook of Lie group analysis of differential equations, vol.1, 1994.

N. Ibragimov, New trends in theorical developments and computational methods, vol.3, 1996.

A. Keating, U. Piomelli, K. Bremhorst, and S. Nesic, Large-eddy simulation of heat transfer downstream of a backward-facing step, Journal of Turbulence, vol.5, issue.020, 2004.

P. Kim and P. Olver, Geometric integration via multi-space, Regular and Chaotic Dynamics, vol.9, issue.3, pp.213-226, 2004.

D. Lilly, A proposed modification of the Germano subgrid-scale closure method, Physics of Fluids, vol.4, issue.3, pp.633-635, 1992.

B. Lindgren, J. Osterlund, and A. Johansson, Evaluation of scaling laws derived from lie group symmetry methods in zero-pressure-gradient turbulent boundary layers, Journal of Fluid Mechanics, vol.502, pp.127-152, 2004.

E. Noether, Invariante Variationsprobleme, Königliche Gesellschaft der Wissenschaften, pp.235-257, 1918.

M. Oberlack, Invariant modeling in large-eddy simulation of turbulence, 1997.

M. Oberlack, Symmetries, invariance and scaling-laws in inhomogeneous turbulent shear flows. Flow, Turbulence and Combustion, vol.62, pp.111-135, 1999.

M. Oberlack, W. Cabot, B. Pettersson-reif, and T. Weller, Group analysis, direct numerical simulation and modelling of a turbulent channel flow with streamwise rotation, Journal of Fluid Mechanics, vol.562, pp.355-381, 2006.

P. Olver, Applications of Lie groups to differential equations. Graduate texts in mathematics, 1986.

P. Olver, Geometric foundations of numerical algorithms and symmetry. Applicable Algebra in Engineering, Communication and Computing, vol.11, issue.5, pp.417-436, 2001.

S. H. Peng and L. Davidson, Comparison of subgrid-scale models in LES for turbulent convection flow with heat transfer, 2nd EF Conference in Turbulent Heat Transfer, vol.1, pp.5-25, 1998.

V. Pukhnachev, Invariant solution of Navier-Stokes equations describing motions with free boundary, Doklady Akademii Nauk SSSR, pp.202-302, 1972.

D. Razafindralandy and A. Hamdouni, Consequences of symmetries on the analysis and construction of turbulence models. Symmetry, Integrability and Geometry: Methods and Applications, vol.2, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00312559

D. Razafindralandy and A. Hamdouni, Symmetry invariant subgrid models, Proceedings of the Sixth International ERCOFTAC Workshop on Direct and Large-Eddy Simulation, vol.6, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02093336

D. Razafindralandy, A. Hamdouni, and C. Béghein, A class of subgrid-scale models preserving the symmetry group of Navier-Stokes equations, Communications in Nonlinear Science and Numerical Simulation, vol.12, issue.3, pp.243-253, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00312286

D. Razafindralandy, A. Hamdouni, and M. Oberlack, Analysis and development of subgrid turbulence models preserving the symmetry properties of the Navier-Stokes equations, European Journal of Mechanics/B
URL : https://hal.archives-ouvertes.fr/hal-00312287

C. Speziale, Some interesting properties of two-dimensional turbulence, Physics of Fluids, vol.24, pp.1425-1427, 1981.

G. Unal, Application of equivalence transformations to inertial subrange of turbulence, Lie Group and Their Applications, vol.1, issue.1, pp.232-240, 1994.

K. Vu and J. Carminati, Symbolic computation and differential equations: Lie symmetries, Journal of Symbolic Computation, vol.29, issue.2, pp.95-116, 2000.

L. Wang, Frame-indifferent and positive-denite Reynolds stress-strain relation, Journal of Fluid Mechanics, vol.352, pp.341-358, 1997.

L. Wang, Physics-preserving turbulent closure models: SGS flux vectors of mass and energy, 3 rd AFOSR International Conference on Direct Numerical Simulation and Large Eddy Simulation (TAICDL), 2001.

G. Winckelmans, A. Wray, and O. Vasilyev, Testing of a new mixed model for LES : the Leonard model supplemented by a dynamic Smagorinsky term, pp.367-388, 1998.