F. Archambeau, N. Mehitoua, and M. Sakiz, Code saturne: a finite volume code for the computation of turbulent incompressible flows -Industrial applications, International Journal On Finite Volumes, vol.1, issue.1, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01115371

B. J. Cantwell, Similarity transformations for the two-dimensional, unsteady, stream-function equation, Journal of Fluid Mechanics, vol.85, pp.257-271, 1978.

R. Cheesewright, K. J. King, and S. Zlai, Experimental data for the validation of computer code for the prediction of two-dimensional buoyant cavity flows, ASME Meeting HTD, vol.60, pp.75-86, 1986.

M. Chhay, E. Hoarau, A. Hamdouni, and P. Sagaut, Comparison of some lie-symmetry-based integrators, Journal of Computational Physics, vol.230, pp.2174-2188, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01298900

G. Gallavotti, Foundations of fluid mechanics, 2000.

V. Grassi, R. A. Leo, G. Soliani, and P. Tempesta, A group analysis of the 2d navier-stokes-fourier equations, Physica A: Statistical Mechanics and its Applications, vol.293, pp.421-434, 2001.

V. Grassi, R. A. Leo, G. Soliani, and P. Tempesta, Vorticies and invariant surfaces generated by symmetries for the 3D Navier-Stokes equation, Physica A, vol.286, pp.79-108, 2000.

V. Grassi, R. A. Leo, G. Soliani, and P. Tempesta, Temperature behaviour of vortices of a 3D thermoconducting viscous fluid, Physica A: Statistical Mechanics and its Applications, vol.305, issue.3-4, pp.371-380, 2002.

W. Hereman, Review of symbolic software for the computation of Lie symmetries of differential equations, Euromath Bulletin, vol.1, issue.2, pp.45-79, 1994.

M. Itskov, Tensor algebra and tensor analysis for engineers: With applications to continuum mechanics, 2009.

E. Noether, Invariante Variationsprobleme, Königliche Gesellschaft der Wissenschaften, pp.235-257, 1918.

E. Noether and A. Tavel, Invariant variation problems, Transport Theory and Statistical Physics, vol.1, pp.183-207, 1971.

M. Oberlack, A unified approach for symmetries in plane parallel turbulent shear flows, Proceedings in Applied Mathematics and Mechanics, vol.427, pp.299-328, 2001.

M. Oberlack, On the decay exponent of isotropic turbulence, Journal of Fluid Mechanics, vol.1, issue.1, pp.294-297, 2002.

M. Oberlack, W. Cabot, B. P. Reif, and T. Weller, Group analysis, direct numerical simulation and modelling of a turbulent channel flow with streamwise rotation, Journal of Fluid Mechanics, vol.562, pp.355-381, 2006.

P. Olver, Applications of Lie groups to differential equations. Graduate texts in mathematics, 1986.

D. Razafindralandy and A. Hamdouni, Consequences of symmetries on the analysis and construction of turbulence models. Symmetry, Integrability and Geometry: Methods and Applications, vol.2, p.52, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00312559

D. Razafindralandy, A. Hamdouni, and C. Béghein, A class of subgrid-scale models preserving the symmetry group of Navier-Stokes equations, Communications in Nonlinear Science and Numerical Simulation, vol.12, issue.3, pp.243-253, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00312286

D. Razafindralandy, A. Hamdouni, and M. Oberlack, Analysis and development of subgrid turbulence models preserving the symmetry properties of the Navier-Stokes equations, European Journal of Mechanics/B, vol.26, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00312287

J. Smagorinsky, General circulation experiments with the primitive equations, Monthly Weather Review, vol.91, issue.3, pp.99-164, 1963.

G. Smith, On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors, International Journal of Engineering Science, vol.9, pp.899-916, 1971.

G. , Constitutive equation of turbulence and the Lie symmetries of Navier-Stokes equations, Modern Group Analysis VII, pp.317-323, 1997.

W. Zhang and Q. Chen, Large eddy simulation of natural and mixed convection airflow indoors with two simple filtered dynamic subgrid scale models, Numerical Heat Transfer, Part A: Applications, vol.37, issue.5, pp.447-463, 2000.