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Abstract: This article presents a mechanical fault diagnosis methodology in synchronous machines
using only a single current measurement in variable speed conditions. The proposed methodology
uses order tracking in order to sample the analysis signal as a function of the rotor angle. The spectrum
of the signal is then independent of speed and it could be employed in frequency analysis. Order
tracking is usually applied using rotor position measurement. In this work, the proposed method
uses one current measurement to estimate the position as well as the analysis signal (rotation speed).
Furthermore, a statistical approach is used to create a complete diagnosis protocol. At variable speed
and with only one current measurement the diagnosis is challenging. However, order tracking will
allow simpler analysis. The method is proved in simulations and experimental set-up.

Keywords: PMSM diagnostic; variable speed; tacholess order tracking; motor current analysis;
statistical approach

1. Introduction

In this article, we present a methodology for diagnosing mechanical faults for synchronous
machines used in non-stationary conditions (variable speed). The procedure is developed from a
single current measurement and without a speed sensor. Many methods have been developed for
the diagnosis of electrical machines from Electrical Signature Analysis (ESA) [ 1,2]. Their adaptation
to the case of variable speed requires the use of speci�c signal processing [3–5] or methods based
on sensorless control theory [6,7]. In this article, the method used is the Tacholess Order Tracking
(TOT) [8,9]. It is based on the sampling of measurements with respect to an angle (mechanical angle or
electrical angle). The advantage of this approach is to be able to stationarize the spectral representation,
that is to say, to make the spectrum of the signal independent of the speed of rotation and thus to
facilitate the analysis.

It is now well established that instantaneous speed is a good candidate for the diagnosis of
mechanical faults in electrical machines [10]. In the case of synchronous machines, this speed is
proportional to the frequency of the electrical signals. Consequently, Motor Current Signature Analysis
(MCSA) methods have been highly developed [ 11–13]. For its part, TOT is generally implemented
using two complementary measures: The �rst contains the signature of the defect sought, and the
second is used to estimate the mechanical angle [14–16]. The originality of this work is to propose
a software sensor allowing, from a single measurement, to extract the quantity possessing the fault
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signatures, to estimate the mechanical angle of the machine, and to carry out the angular sampling.
It is a preparatory work for the design of a new software sensor that can be used in industry and the
main constraint is that all of these operations be carried out in real-time.

This article proposes a complete procedure (measurement, processing, angular sampling, and fault
detection procedure). It follows on from the work in [ 17] by analyzing more precisely the design of
the PLL, introducing a new online angular sampling tool, and showing that the TOT allows a very
simpli�ed statistical analysis. The procedure is tested in simulation and on a laboratory test bench.

The article is organized into six sections. Section 2 recalls the modulation phenomenon occurring
in currents in the presence of faults. Section 3 presents the angular resampling procedure based on an
original PLL design. The experimental results obtained on the test bench are presented in Section 4
and discussed. In Section 5, the resampled signal is exploited by a statistical diagnostic procedure. It is
shown that this procedure is simpli�ed compared to a classical temporal sampling.

2. Electrical Currents Analysis

Electrical currents analysis focuses on diagnosis of electrical machines (asynchronous and
synchronous) from only currents measurements. In order to understand the fault signatures,
a commonly accepted approach considers that mechanical faults will cause either a variation of
torque or a variation of eccentricity. These variations cause phase modulations (PM) of current in case
of torque variations and amplitude modulations (AM) in case of dynamic eccentricity variations [ 18,19].
The general form of the stator current can be expressed as

I (t) = A(t)cos(q(t)) (1)

where A(t) and q(t) represent, respectively, the instantaneous amplitude and the instantaneous phase.
In the case of a sinusoidal perturbations, the expressions of the modulated current are given as follows,

A(t) = I � [1 + acos(2p fAM t + f AM )] (2)

q(t) = 2p fst + bcos(2p fPM t + f PM ) + f I (3)

where a, fAM , and f AM represent, respectively, the modulation index, the frequency of the modulating
signal, and the initial phase for AM modulation (as well as b, fAM , and f I for FM modulation).

The isolation of fault components in currents is more dif�cult than in vibratory measurement
because the signal-to-noise ratio is much lower and the fundamental electrical component is of
high amplitude and masks the sought frequencies. One possibility is to remove this fundamental
in order to amplify the fault frequencies [ 20]. However, the simplest solution is to demodulate
the currents in amplitude or in phase. When the three currents are available, the concordia
transform makes it possible to carry out these demodulations in a relatively simple manner. From a
single current measurement, it is natural to use the Phase-Locked Loop (PLL) resulting from
telecommunications [ 21]. In the �eld of electrical engineering, PLLs have been widely used in the
analysis of electrical networks [ 22–24]. For synchronous motor, PLLs are exploited as virtual speed
sensors from currents measurements [25,26]. In the following, a PLL is speci�cally designed for
operations at variable frequency and amplitude to simultaneously estimate the rotation frequency and
the mechanical position.

3. A PLL-Based Online Resampling

3.1. PLL Design and Improvements

A classic PLL has three parts: phase detector (PD), loop �lter (LF), and a voltage-controlled
oscillator (VCO), Figure 1a. A simple multiplier could be used as a PD. However, higher harmonics
will be generated [ 22]. To overcome this issue, an orthogonal signal generator (OSG) is used to generate
two orthogonal signals. Due to orthogonality, harmonics in the output of PD are now eliminated.
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Figure 1. DE_PLL. (a) Basic structure. (b) Phase detector.

In [ 22], an OSG-PLL based on derivative elements (DE) is proposed. Figure 1b shows the PD of
the proposed PLL. Every DE is de�ned by two �lters:

DE

8
>>><

>>>:

G(s) =
w2

Rs

s2 + 2wRs+ w2
R

bandpass

G
0
(s) =

w2
R

s2 + 2wRs+ w2
R

low � pass
(4)

The proposed structure is vulnerable to noise and to high variations of instantaneous amplitude
of input signal. In order to show the behavior of this structure in those two conditions, the PLL is
tested in simulation. The input is a sinusoidal signal where its amplitude and frequency change with
time. In Figure 2, the input signal and the PLL estimations are shown. In Figure 2a, the instantaneous
amplitude is increasing. In Figure 2b, at the start the frequency is estimated, but some noise is presented.
Next, the estimation is lost because of the increasing amplitude as well as for the phase in Figure 2c.
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Figure 2. (a) Input and Phase-Locked Loop (PLL) sinusoidal output v f , (b) frequency, and (c) phase.



Sensors2020, 20, 5011 4 of 14

The structure of the PLL is modi�ed in order to have a better performance. The �rst improvement
is to use adaptive �lters. The state variable structure shown in Figure 3 could create two �lters:
bandpass and low-pass. The �lters are tuned using the estimated instantaneous frequency.

- - -
? R R-

-
+

Vi
V1 V2

V3

Band-pass

Low-pass
?

�

?

2m
1

2m
ŵ

- - -

�

6

Figure 3. State variable structure.

When the damping ratio is set to m = 1/ 2, the transfer functions of the new �lters are as follows,

8
><

>:

Gx(s) = wRs
s2+ wRs+ w2

R
band� pass

G
0
x(s) = w2

R
s2+ wRs+ w2

R
low � pass

(5)

with wR representing at the same time the central frequency of the band-pass �lter and the cut-off
frequency of the low-pass �lter. Here, wR is the estimated frequency ŵ.

The second improvement is to normalize the amplitude of the input signal to � 1. The two
orthogonal signals generated by the adaptive �lters va and vb are used to create the normalized signals
vaN and vbN , see Figure 4.
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ŵ
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Figure 4. Normalization of input signal.

After the two improvements, the PLL is tested using the same simulation as before. The estimated
signal, frequency, and phase are shown in Figure 5. The frequency is estimated with reduced amount
of noise. The estimation is not lost even with increasing amplitude, see Figure 5c.
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Figure 5. (a) Input and PLL sinusoidal output v f , (b) frequency, and (c) phase.

3.2. Parameter Setting

In order to initialize the parameters of the PLL, the linearized model of the PLL is calculated.
The error of the PD is as follows,

e � kpd(q̂ � qi ) (6)

where q̂ is the estimated phase andqi is the phase of the input signal.
The Proportional-Integral (PI) controller used has the following equation,

f (s) = kp +
ki

s
(7)

where kp and ki represent the proportional and the integral gains, respectively.
According to the work in [ 22], the closed-loop transfer function of the linearized model is

as follows,

HCL(s) =
q̂(s)
qi (s)

=
KpKpds+ KiKpd

s2 + KpKpds+ KiKpd
(8)

with kpd the PD gain is equal to ws/ 4 or the PD is modi�ed, and the new gain kpd should be calculated.
In Equation (5), if s is replaced with jw the transfer functions will be

Gx( jw) =
jw.wR

� w2 + jw.wR + w2
R

; G
0

x( jw) =
w2

R

� w2 + jw.wR + w2
R

(9)

If the input is sinusoidal at angular frequency w = w0, and because the �lters are adaptive
through the estimated frequency, with a locked PLL wR

�= ŵ �= w0 the �lters will be

Gx( jw0) =
jw2

0

� w2
0 + jw2

0 + w2
0

= 1; G
0

x( jw0) =
w2

0

� w2
0 + jw2

0 + w2
0

= � j (10)

The last equation shows that those two �lters have at w = w0 a gain equal to 1 and phase shift
equal to p /2.
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After normalization of the input signal and because of using �lter with gain = 1, we can exclude
the two other OSG �lters named DE2 in Figure 1. The creation of two orthogonal signals of the
estimated output is done simply by the functions Sin and Cosas shown in Figure 4. The gain of all
four �lters is equal to 1 at w = w0, so kpd = 1. The error of the PD is now

e = vbN
� voa � vaN � vob � kpd � sin(q̂ � qi ) � (q̂ � qi ) (11)

The closed-loop transfer function is now equal to

HCL(s) =
q̂(s)
qi (s)

=
Kps+ Ki

s2 + Kps+ Ki
(12)

It could be presented using this canonical form:

Hc(s) =
2xwns+ w2

n

s2 + 2xwns+ w2
n

, (13)

with

wn =
p

ki and x =
kp

2wn
(14)

Therefore, the two parameters of the PLL, ki and kp, could be calculated if x and wn are initialized
using the following equations,

kp = 2xwn and ki = w2
n (15)

In order to obtain more stability while estimating the frequency, the damping factor is set to x = 2.
Furthermore, to minimize the noise bandwidth, wn is set to wc/ 10 with wc representing the central
angular frequency.

3.3. Online Resampling

Order Tracking (OT) consists of replacing the traditional temporal sampling of the signal
containing fault informations with angular sampling. The signal resampling converts it from the
time-domain ( Dt) into the angle-domain, where samples are captured every rotor position increment
Dq. The Hardware Order Tracking (HOT) is a solution that provides electric impulses every angle
increment using a sensor attached to the machine. The TOT provides those position impulses without
adding any new sensors. It uses the estimated position vector q̂(t) and transforms it to an equally
spaced vector with constant Dq. To do that, many of�ine interpolation algorithms are used in [ 27–32].
In this paper, a new online (real-time) algorithm is used. The proposed algorithm is part of the TOT
family as resampling does not need a speed sensor to be implemented. This algorithm is an alternative
of a sensor directly supplying digital data sampled at an angle. The block diagram is shown in Figure 6.
A quantizer is used to detect angle steps Dq of the estimated phase q̂(t), then pulses are generated
at every angle step using a monostable. The pulses vector will be used as a trigger to convert the
time-dependent signal to a new position-dependent one which spectrum will remain stationary even
with speed varying conditions.

The PLL described in Section 3.1 provides both the estimated speed bw(t) and mechanical position
q̂(t). The fault signature is looked for in bw(t) and the position is used for resampling. In the following,
the complete procedure is tested on the laboratory test bench.
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4. Experimental Results

4.1. Test Bench Description

A wind turbine test bench is used to verify the proposed method. As shown in Figure 7,
two Permanent Magnet Synchronous Machines of 8 kW are used.

Figure 7. Experimental set-up.

The machines haveP = 4 pole pairs. The PMSG is driven by a PMSM through a gearbox with
4.57 ratio. The motor is controlled through a variable speed drive. The generator is connected to
a passive load. Current measurements are collected via a dSPACE-DS1104 acquisition card with a
sampling frequency fs = 10kHz. The rotor position is also collected to compare the results. In Figure 8,
a mechanical system is designed to simulate the fault. As mentioned before, mechanical faults generate
either variations of torque or variations of eccentricity. The emulator makes it possible to simulate
the resistance torque variations (for low impacts) and the air gap variations (for strong impacts).
The system is mounted between the motor and the gearbox (low speed part). A vertical roller impacts a
sprocket of 9 teeth. This interaction generates 9 impacts per turn. The vertical axis could be controlled
to change the force of the generated fault.



Sensors2020, 20, 5011 8 of 14

Figure 8. Fault emulator.

4.2. Results

In order to verify the method, a test is realized with variable speed. The electrical frequency of
the generator current changes approximately 30 Hz between 10 Hz and 50 Hz with a cycle of 7.5 s.
In this test, the data of three cycles with total duration of 22.5 s are collected. Using the current i1,
an amplitude normalization is performed at the input stage, see Figure 9.

0 5 10 15 20
-8

-6

-4

-2

0

2

4

6

8

Figure 9. Normalization of the input signal i1.

After normalization, the PLL will estimate the phase q̂(t) and the electrical angular frequency ŵ(t)
using the normalized current. The central frequency of the PLL is set to wc = 2p � 30 rad/s. kp and ki

are set using Equation (15). Forx = 2 and wn = wc/ 10, the parameters are set tokp = 75 and ki = 355,
respectively. As mentioned before, P = 4, so the mechanical rotating frequency of the generator is
1/4 its electrical frequency, which means it will change between 2.5 Hz and 12.5 Hz. The estimated
frequency and the measured one are shown in Figure 10.
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Figure 10. Estimation of rotating mechanical frequency.

The estimated phase ˆq(t) is then used to resample the estimated frequency ŵ(t). The online
resampling is executed with an angular step Dqs = 0.2rad; the Fast Fourier Transform FFT of the new
signal ŵ(q) is calculated. The angular spectrum for both healthy and faulty measurements are shown
in Figure 11, it is represented in events per rotor revolution. The default generates nine impacts per
revolution at low speed side. On the other side of the gearbox (generator side), the number of impacts
generated is gd = 9/4.57 = 1.97 impacts/rev. The two components g1 and g2 are related to the gearbox,
they are presented in healthy and faulty conditions.
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Figure 11. Angular spectrum of mechanical frequency.

In Figure 12, a zoom around the fundamental and the second harmonic gd and 2gd is
shown. The fault signature is correctly detected at 1.97 event/revolution. The second harmonic
at 3.94 event/rev could be detected but it is attenuated due to the �lters used at the input of the PLL.
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Figure 12. Zoom around fault components in angular spectrum.

In this section, the modi�ed PLL is tested on data with variable speed. The rotating speed is
estimated as well as the rotor position. The estimated speed is then resampled in order to obtain
an angle-dependent signal. A classical FFT shows that the angular spectrum is stationary and the
components are no longer shifting with speed variations. It is shown that fault components are
identi�ed in angular spectrum. In the next session, a statistical-based method is used for fault detection.

5. Diagnosis Protocol: Statistical Approach

5.1. Protocol Principle

To create a diagnosis protocol, an alarm should be triggered automatically when a fault appears.
Then, a threshold of a speci�c signature should be de�ned. To achieve that in a noisy environment,
the statistical approach is a robust and reliable solution. In [ 33,34], a statistical diagnosis approach
is proposed for speed-varying conditions. This approach proposes two phases: learning phase and
diagnosis phase. The fault signature chosen is the amplitude of the fault corresponding frequency in
the angular speed signal:

Sf ault = j f̂m( fd) j (16)

During the learning phase, a statistical reference of healthy state is created. To do that,
Nre f recordings are registered. Then, the fault signature Sf ault(k) of every recording is determined.
The statistical features meanmand standard deviation s are calculated as follows,

m̂re f =
1

Nre f

Nre f

å
k= 1

Sf ault(k) (17)

ŝre f =

vu
u
t 1

Nre f � 1

Nre f

å
k= 1

(Sf ault(k) � m̂re f)2 (18)

In order to make the signature independent of machine type, a reduced centered signature is
de�ned as follows,

Sf ault,RC(k) =
Sf ault(k) � m̂re f

ŝre f
(19)
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After creating the normalized reference, a threshold could be determined to lunch automatically
a faulty state alarm. A probability of 1% is inspired from the Gaussian distribution using the
following equations,

P(Sf ault,RC(k) > t1%) = 0, 01 (20)

This probability is calculated as follows,

P(Sf ault,RC(k) > t) = 1 � F (t) (21)

The alarm threshold for a probability of 1% means that when the alarm is launched declaring a
faulty state, there is 1% chance of it being a false alarm. This probability could be changed depending
on the used application ( 0.1%for example). The diagnosis phase could now started after setting the
alarm threshold.

This approach is simple when the rotation speed is constant. It becomes more complex for variable
speed conditions. The proposed solution in [ 34] is to divide the torque-speed into N different zones.
A normalized reference and alarm threshold are created for every zone during the training phase.
After that, when the diagnosis phase starts, the torque and the speed of the machine are calculated
to allow the determination of a speci�c functioning zone of the machine in the torque-speed plane.
The decision is made according the this speci�c zone.

In this paper, it is shown that order tracking method creates a stationary spectrum (events per
revolution). Therefore, the statistic features are usable even with variable speed conditions. Which
allows us to use the simple statistical approach without the segmentation solution. In the following
section, the experimental results of this approach are shown.

5.2. Results

In order to validate the statistical approach, the same test bench of Section 4 with the same
conditions are used. In the training phase, Nre f = 50recordings are collected. Each recording represents
one speed cycle with a duration of 7.5 s. The fault signatures Sf ault are calculated. The normalized
reference is then created. The threshold of a probability of 1% equals 2.33. In Figures 13 and 14,
the distribution of normalized signatures and the threshold are shown. In the diagnosis phase, 50 other
recordings are collected for faulty conditions.

Figure 13. Histogram distribution of fault signatures using 1 cycle.
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Figure 14. Fault signatures using 1 cycle with 50 recordings.

It is noted that the threshold separates healthy from faulty signatures. Those signatures are
calculated with FFT on one speed cycle. In order to improve this approach and decrease the risk of
launching false alarms, new signatures are calculated on two cycles for a duration of 15 s. In Figure 15,
25 healthy recordings of two cycles are shown as well as 25 faulty recordings. It is noted that the
difference between healthy and faulty signatures is bigger. A more reliable threshold could be de�ned
now (0.1% for example).

Figure 15. Fault signatures using 2 cycles with 25 recordings.

6. Conclusions

In this article, we have implemented a Tacholess Order Tracking technique from a single current
measurement. The proposed method makes it possible to estimate both the instantaneous speed
containing the fault signatures and the mechanical position used for resampling. The objective was
to achieve a system providing a resampled signal in real-time. For this, an original procedure has
been proposed. The tests were carried out on synchronous machines, which is a simple case. Indeed,
the speed is directly proportional to the electrical frequency. Future work concerns the extension of this
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method to asynchronous machines where slip must be taken into account. Furthermore, the objective is
to produce an innovative industrial product. Additional work will be necessary to study the transition
of algorithms from our Matlab/Simulink platform to an embedded system.
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