C. Boyer, Hydrogène. Techniques de l'ingénieur, 1(J6368), 2012.

T. Graham and . Ii, On the occlusion of hydrogen gas by metals, Proceedings of the Royal Society of London, vol.16, pp.422-427, 1868.

W. H. Johnson and . Ii, On some remarkable changes produced in iron and steel by the action of hydrogen and acids, Proceedings of the Royal Society of London, vol.23, pp.168-179, 1875.

X. Feaugas and E. Andrieu, Corrosion sous contrainte: couplages mécano-chimique, Ecole Thématique Métallurgie, 2016.

H. Sugimoto and Y. Fukai, Solubility of hydrogen in metals under high hydrogen pressures: thermodynamical calculations, Acta Metallurgica et Materialia, vol.40, issue.9, pp.2327-2336, 1992.

Y. Fukai, The Metal-Hydrogen System: Basic Bulk Properties, 2006.

J. P. Hirth, Effects of hydrogen on the properties of iron and steel, Metallurgical Transactions A, vol.11, issue.6, pp.861-890, 1980.

S. P. Lynch, Hydrogen embrittlement phenomena and mechanisms, Corrosion Reviews, vol.30, pp.105-123, 2012.

I. M. Robertson, P. Sofronis, A. Nagao, M. L. Martin, S. Wang et al., Hydrogen embrittlement understood, Metallurgical and Materials Transactions B, vol.46, issue.3, pp.1085-1103, 2015.

A. Oudriss, Influence des hétérogénéités métallurgiques sur les processus de diffusion et de piégeage de l'hydrogène dans le nickel, 2012.

J. Li, Apport de l'ingénierie du joint de grain dans la problématique de la fragilisation par l'hydrogène de nature inter granulaire, 2017.

C. Labes and R. B. Mclellan, Thermodynamic behavior of dilute palladium-hydrogen solid solutions, Acta Metallurgica et Materialia, vol.26, issue.5, pp.893-899, 1978.

R. J. Farraro and R. B. Mclellan, Elastic properties of dilute palladium-hydrogen solid solutions, Journal of Physics and Chemistry of Solids, vol.39, issue.7, pp.781-785, 1978.

B. O. Hoch, Modelling of hydrogen diffusion in heterogeneous materials: implications of the grain boundary connectivity, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01373448

M. Lebienvenu, Nickel et cobalt. Techniques de l'ingénieur, 1(M2454), 1983.

S. Eramet, Métallurgie du nickel. Techniques de l'ingénieur, 1(M2250), 1996.

P. Li, S. X. Li, Z. G. Wang, and Z. F. Zhang, Fundamental factors on formation mechanism of dislocation arrangements in cyclically deformed FCC single crystals, Progress in Materials Science, vol.56, issue.3, pp.328-377, 2011.

O. B. Pedersen, Overview no. 89 Mechanism maps for cyclic plasticity and fatigue of single phase materials, Acta Metallurgica et Materialia, vol.38, issue.7, pp.1221-1239, 1990.

X. Feaugas, Contribution à la compréhension des mécanismes de déformation plastique et d'endommagement: un point de vue expérimental. Mémoire d'habilitation à diriger des recherches, 1999.

D. Gentet, Compréhension et modélisation du comportement mécanique cyclique anisotherme de l'acier austénitique AISI 216L(N), 2009.

Z. S. Basinski and S. J. Basinski, Plastic deformation and work hardening, Dislocations in solids, vol.4, p.657, 1979.

A. S. Argon, Mechanical properties of single phase crystalline media: deformation at low temperature, Physical Metallurgy, vol.3, pp.1877-1955, 1996.

N. Hansen and X. Huang, Microstructure and flow stress of polycrystals and single crystals, Acta Materialia, vol.46, issue.5, pp.1827-1836, 1998.

X. Feaugas and H. Haddou, Effects of grain size on dislocation organization and internal stresses developed under tensile loading in FCC metals, Philosophical Magazine, vol.87, issue.7, pp.989-1018, 2007.

P. J. Woods, Low-amplitude fatigue of copper and copper-5 at. % aluminium single crystals, Philosophical Magazine A, vol.28, issue.1, pp.155-191, 1973.

A. T. Winter, A model for the fatigue of copper at low plastic strain amplitudes. Philosophical Magazine A, vol.30, pp.719-738, 1974.

H. Haddou, M. Risbet, G. Marichal, and X. Feaugas, The effects of grain size on the cyclic deformation behaviour of polycrystalline nickel, Materials Science and Engineering A, vol.379, issue.1, pp.102-111, 2004.

H. Mughrabi, The cyclic hardening and saturation behaviour of copper single crystals, Materials Science and Engineering, vol.33, issue.2, pp.207-223, 1978.

X. Feaugas, On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: back stress and effective stress, Acta Materialia, vol.47, issue.13, pp.3617-3632, 1999.

X. Feaugas and C. Gaudin, Different levels of plastic strain incompatibility during cyclic loading: in terms of dislocation density and distribution, Materials Science and Engineering A, 2001.

X. Feaugas and P. Pilvin, A polycrystalline approach to the cyclic behaviour of F.C.C. alloys -intra-granular heterogeneity, Advanced Engineering Materials, vol.11, issue.9, pp.703-709, 2009.

P. Li, Z. F. Zhang, X. W. Li, S. X. Li, and Z. G. Wang, Effect of orientation on the cyclic deformation behavior of silver single crystals: comparison with the behavior of copper and nickel single crystals, Acta Materialia, vol.57, issue.16, pp.4845-4854, 2009.

J. Kratochvíl, M. Saxlovà, B. Devincre, and L. P. Kubin, On the sweeping of dipolar loops by gliding dislocations, Materials Science and Engineering A, pp.318-321, 1997.

L. P. Kubin and J. Kratochvíl, Elastic model for the sweeping of dipolar loops, Philosophical Magazine A, vol.80, issue.1, pp.201-218, 2000.

A. S. Cheng and C. Laird, Mechanisms of fatigue hardening in copper single crystals: the effects of strain amplitude and orientation, Materials Science and Engineering, vol.51, issue.1, pp.111-121, 1981.

J. Bretschneider, C. Holste, and B. Tippelt, Cyclic plasticity of nickel single crystals at elevated temperatures, Acta Materialia, vol.45, issue.9, pp.3775-3783, 1997.

B. Gong, Z. Wang, and Z. Wang, Cyclic deformation behavior and dislocation structures of [001] copper single crystals-I Cyclic stress-strain response and surface feature, Acta Materialia, vol.45, issue.4, pp.1365-1377, 1997.

B. Gong, Z. Wang, D. Chen, and Z. Wang, Investigation of macro deformation bands in fatigued [001] Cu single crystals by electron channeling contrast technique, Scripta Materialia, vol.37, issue.10, pp.1605-1610, 1997.

X. Li, Z. G. Wang, G. Li, S. D. Wu, and S. X. Li, Cyclic stress-strain response and surface deformation features of [011] multiple-slip-oriented copper single crystals, Acta Materialia, vol.46, issue.13, pp.4497-4505, 1998.

T. Lepistö, V. Kuokkala, and P. Kettunen, The PSB structure in multiple-slip oriented copper single crystals, Scripta Metallurgica, vol.18, issue.3, pp.245-248, 1984.

T. K. Lepistö, V. Kuokkala, and P. O. Kettunen, Dislocation arrangements in cyclically deformed copper single crystals, Materials Science and Engineering, vol.81, pp.457-463, 1986.

T. K. Lepistö and P. O. Kettunen, Comparison of the cyclic stress-strain behaviour of single-and <111> multiple-slip-oriented copper single crystals, Materials Science and Engineering, vol.83, issue.1, pp.1-15, 1986.

C. Blochwitz and U. Veit, Plateau behaviour of fatigued FCC single crystals, Crystal Research and Technology, vol.17, issue.5, pp.529-551, 1982.

C. Buque, J. Bretschneider, A. Schwab, and C. Holste, Dislocation structures in cyclically deformed nickel polycrystals, Materials Science and Engineering A, vol.300, issue.1, pp.254-262, 2001.

C. Buque, Persistent slip bands in cyclically deformed nickel polycrystals, International Journal of Fatigue, vol.23, issue.6, pp.459-466, 2001.

C. Buque, Dislocation structures and cyclic behaviour of [011] and [111]-oriented nickel single crystals, International Journal of Fatigue, vol.23, issue.8, pp.671-678, 2001.

C. Buque, J. Bretschneider, A. Schwab, and C. Holste, Effect of grain size and deformation temperature on the dislocation structure in cyclically deformed polycrystalline nickel, Materials Science and Engineering A, pp.631-636, 2001.

A. Schwab and C. Holste, Prediction of the cyclic stress-strain curve of polycrystalline nickel, Acta Materialia, vol.50, issue.2, pp.289-303, 2002.

X. W. Li, Z. G. Wang, and S. X. Li, Survey of plateau behaviour in the cyclic stress-strain curve of copper single crystals, Philosophical Magazine Letters, vol.79, issue.9, pp.715-719, 1999.

K. Mecke and C. Blochwitz, Saturation dislocation structures in cyclically deformed nickel single crystals of different orientations, Crystal Research and Technology, vol.17, issue.6, pp.743-758, 1982.

A. H. Cottrell, Dislocations and plastic flow in crystals. International Series of Monographs on Physics, 1953.

X. Feaugas, Tensile and cyclic hardening: back and effective stresses concept and their applications. Recent Research and Development in Material Science, vol.4, pp.35-64, 2003.

J. I. Dickson, L. Handfield, and G. L&apos;esperance, Cyclic softening and thermally activated deformation of titanium and zirconium, Materials Science and Engineering, vol.60, issue.2, pp.3-7, 1983.

J. I. Dickson, J. Boutin, and L. Handfield, A comparison of two simple methods for measuring cyclic internal and effective stresses, Materials Science and Engineering, vol.64, issue.1, pp.7-11, 1984.

X. Feaugas, S. Catalao, P. Pilvin, and M. Cabrillat, On the evolution of cyclic deformation microstructure during relaxation test in austenitic stainless steel at 823 K, Materials Science and Engineering A, pp.422-425, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00400617

H. Mughrabi, Dislocation clustering and long-range internal stresses in monotonically and cyclically deformed metal crystals, Revue de Physique Appliquée, vol.23, issue.4, pp.367-379, 1988.
URL : https://hal.archives-ouvertes.fr/jpa-00245783

H. Mughrabi, T. Ungár, W. Kienle, and M. Wilkens, Long-range internal stresses and asymmetric x-ray line-broadening in tensile-deformed [001]-orientated copper single crystals, Philosophical Magazine A, vol.53, pp.793-813, 1986.

H. Mughrabi, Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals, Acta Metallurgica, vol.31, issue.9, pp.1367-1379, 1983.

, J. Friedel. Dislocations, 1964.

J. P. Hirth and J. Lothe, Theory of dislocations, 1982.

F. R. Nabarro, Theory of crystal dislocations, 1987.

D. Caillard and J. L. Martin, Thermally Activated Mechanisms in Crystal Plasticity. Pergamon Materials Series, 2003.

V. Bulatov and W. Cai, Computer Simulations of Dislocations. Osmm Series. OUP Oxford, 2006.

D. Hull and D. J. Bacon, Introduction to Dislocations, 2011.

W. Cai and W. D. Nix, Imperfections in Crystalline Solids. MRS-Cambridge Materials Fundamentals, 2016.

C. Fressengeas, Mechanics of Dislocation Fields, 2017.

U. Essmann, U. Gösele, and H. Mughrabi, A model of extrusions and intrusions in fatigued metals I. Point-defect production and the growth of extrusions, Philosophical Magazine A, vol.44, issue.2, pp.405-426, 1981.

J. Polák, On the role of point defects in fatigue crack initiation, Materials Science and Engineering, vol.92, pp.71-80, 1987.

J. Polák and M. Sauzay, Growth of extrusions in localized cyclic plastic straining, Materials Science and Engineering A, vol.500, issue.1, pp.122-129, 2009.

R. D. Heidenreich and W. Shockley, Conference on Strength of Solids, 1948.

S. Amelinckx, Structural aspects of stacking faults and fault propagation -the fine structure of dislocations, Journal de Physique Colloques, vol.35, pp.1-33, 1974.

A. Asladines, Etude par simulation numérique à l'échelle atomique de mécanismes élé-mentaires de la plasticité dans l'aluminium et le cuivre, 1998.

C. B. Carter and I. L. Ray, On the stacking-fault energies of copper alloys, Philosophical Magazine A, vol.35, issue.1, pp.189-200, 1977.

B. Escaig, Sur le glissement dévié des dislocations dans la structure cubique à faces centrées, Journal de Physique, vol.29, issue.2-3, pp.225-239, 1968.

J. Bonneville and B. Escaig, Cross-slipping process and the stress-orientation dependence in pure copper, Acta Metallurgica, vol.27, issue.9, pp.1477-1486, 1979.

R. L. Segall, P. G. Partridge, and P. B. Hirsch, The dislocation distribution in face-centred cubic metals after fatigue, Philosophical Magazine A, vol.6, issue.72, pp.1493-1513, 1961.

F. Kroupa, Dislocation dipoles and dislocation loops, Journal de Physique Colloques, vol.27, pp.154-167, 1966.
URL : https://hal.archives-ouvertes.fr/jpa-00213130

C. Erel, G. Po, T. Crosby, and N. Ghoniem, Generation and interaction mechanisms of prismatic dislocation loops in fcc metals, Computational Materials Science, vol.140, pp.32-46, 2017.

P. B. Price, On dislocation loops formed in zinc crystals during low temperature pyramidal glide, Philosophical Magazine A, vol.6, issue.63, pp.449-451, 1961.

J. T. Fourie and R. J. Murphy, Elongated dislocation loops and the stress-strain properties of copper single crystals, Philosophical Magazine A, vol.7, issue.82, pp.1617-1631, 1962.

W. G. Johnston and J. J. Gilman, Dislocation multiplication in lithium fluoride crystals, Journal of Applied Physics, vol.31, issue.4, pp.632-643, 1960.

P. Veyssière and F. Grégori, Formation of prismatic loop alignments in crystals deformed in single slip, Philosophical Magazine Letters, vol.81, issue.12, pp.795-801, 2001.

N. Loutat and C. A. Johnson, The behaviour of jogs in dislocations, Philosophical Magazine A, vol.7, issue.84, pp.2051-2057, 1962.

A. S. Tetelman, The pinching-off of dislocation dipoles by glide, Philosophical Magazine A, vol.7, issue.83, pp.1801-1816, 1962.

J. R. Low and A. M. Turkalo, Slip band structure and dislocation multiplication in siliconiron crystals, Acta Metallurgica, vol.10, issue.3, pp.215-227, 1962.

Z. S. Basinski, Work hardening: surface effects. dislocation distribution in deformed copper single crystals, Discussions of the Faraday Society, vol.38, pp.93-102, 1964.

H. Wang, On the annihilation of dislocation dipoles in metals, AIMS Materials Science, vol.4, pp.1231-1239, 2017.

U. Essmann and M. Rapp, Slip in copper crystals following weak neutron bombardment, Acta Metallurgica, vol.21, issue.9, pp.1305-1317, 1973.

U. Essmann and H. Mughrabi, Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities, Philosophical Magazine A, vol.40, issue.6, pp.731-756, 1979.

B. Tippelt, J. Breitschneider, and P. Hähner, The dislocation microstructure of cyclically deformed nickel single crystals at different temperatures, Physica Status Solidi A, vol.163, issue.1, pp.11-26, 1997.

S. Catalao, X. Feaugas, P. Pilvin, and M. Cabrillat, Dipole heights in cyclically deformed polycrystalline AISI 316L stainless steel, Materials Science and Engineering A, pp.349-352, 2005.

P. Veyssière, The weak-beam technique applied to the analysis of materials properties, Journal of Materials Science, vol.41, issue.9, pp.2691-2702, 2006.

H. Wang, D. Xu, R. Yang, and P. Veyssière, The transformation of edge dislocation dipoles in aluminium, Acta Materialia, vol.56, issue.17, pp.4608-4620, 2008.

H. Wang, D. Xu, D. Rodney, P. Veyssière, and R. Yang, Atomistic investigation of the annihilation of non-screw dislocation dipoles in Al, Cu, Ni and ?-TiAl. Modelling and Simulation in, Materials Science and Engineering, vol.21, issue.2, p.25002, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00839671

J. J. Gilman, Influence of dislocation dipoles on physical properties, Discussions of the Faraday Society, vol.38, pp.123-137, 1964.

H. Mecking and U. F. Kocks, Kinetics of flow and strain-hardening, Acta Metallurgica, vol.29, issue.11, pp.1865-1875, 1981.

G. I. Taylor, The mechanism of plastic deformation of crystals. part I.-Theoretical. Proceedings of the, Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.145, issue.855, pp.362-387, 1934.

F. R. Nabarro, Z. S. Basinski, and D. B. Holt, The plasticity of pure single crystals, Advances in Physics, vol.13, issue.50, pp.193-323, 1964.

Z. S. Basinski, Forest hardening in face centred cubic metals, Scripta Metallurgica, vol.8, issue.11, pp.1301-1307, 1974.

H. Mughrabi, The ?-factor in the taylor flow-stress law in monotonic, cyclic and quasistationary deformations: Dependence on slip mode, dislocation arrangement and density. Current Opinion in Solid State and Materials Science, vol.20, pp.411-420, 2016.

J. Man, K. Obrtlík, and J. Polák, Extrusions and intrusions in fatigued metals. part I. State of the art and history, Philosophical Magazine, vol.89, issue.16, pp.1295-1336, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00514019

J. Polák, Mechanisms and kinetics of the early fatigue damage in crystalline materials, Materials Science and Engineering A, pp.33-39, 2007.

D. Setman, E. Schafler, E. Korznikova, and M. J. Zehetbauer, The presence and nature of vacancy type defects in nanometals detained by severe plastic deformation, Materials Science and Engineering A, vol.493, issue.1-2, pp.116-122, 2008.

A. Oudriss, J. Creus, J. Bouhattate, E. Conforto, C. Berziou et al., Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel
URL : https://hal.archives-ouvertes.fr/hal-01892728

, Acta Materialia, vol.60, issue.19, pp.6814-6828, 2012.

D. Guedes, A. Oudriss, S. Frappart, G. Courlit, S. Cohendoz et al., The influence of hydrostatic stress states on the hydrogen solubility in martensitic steels, Scripta Mater, pp.23-26, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01892910

S. P. Lynch, Mechanistic and fractographic aspects of stress-corrosion cracking (SCC), Metals and Surface Engineering, pp.3-89, 2011.

R. Kirchheim, B. Somerday, and P. Sofronis, Chemomechanical effects on the separation of interfaces occurring during fracture with emphasis on the hydrogen-iron and hydrogennickel system, Acta Materialia, vol.99, pp.87-98, 2015.

X. Feaugas and D. Delafosse, Interactions hydrogène/défauts cristallins: effets sur la plasticité et la rupture, Ecole Thématique M2Corr: Mécanique -MicrostructureCorrosion, 2018.

A. R. Troiano, The role of hydrogen and other interstitials in the mechanical behavior of metals, Transactions of American Society for Metals, vol.52, pp.54-60, 1960.

R. Oriani, The diffusion and trapping of hydrogen in steel, Acta Metallurgica, vol.18, issue.1, pp.147-157, 1970.

R. A. Oriani and P. H. Josephic, Equilibrium aspects of hydrogen-induced cracking of steels, Acta Metallurgica, vol.22, issue.9, pp.1065-1074, 1974.

R. A. Oriani and P. H. Josephic, Hydrogen-enhanced load relaxation in a deformed mediumcarbon steel, Acta Metallurgica, vol.27, issue.6, pp.997-1005, 1979.

S. P. Lynch, Hydrogen embrittlement and liquid-metal embrittlement in nickel single crystals, Scripta Metallurgica, vol.13, issue.11, pp.1051-1056, 1979.

N. J. Petch and P. Stables, Delayed fracture of metals under static load, Nature, vol.169, issue.4307, pp.842-843, 1952.

N. J. Petch and . Xxx, The lowering of fracture-stress due to surface adsorption, Philosophical Magazine, vol.1, issue.4, pp.331-337, 1956.

R. B. Mclellan and Z. R. Xu, Hydrogen-induced vacancies in the iron lattice, Scripta Materialia, vol.36, issue.10, pp.1201-1205, 1997.

M. Nagumo, Function of hydrogen in embrittlement of high-strength steels, ISIJ International, vol.41, pp.590-598, 2001.

Y. Fukai, Formation of superabundant vacancies in M-H alloys and some of its consequences: a review, Journal of Alloys and Compounds, pp.263-269, 2003.

N. Z. Carr and R. B. Mclellan, The thermodynamic and kinetic behavior of metal-vacancyhydrogen systems, Acta Materialia, vol.52, issue.11, pp.3273-3293, 2004.

K. Takai, H. Shoda, H. Suzuki, and M. Nagumo, Lattice defects dominating hydrogenrelated failure of metals, Acta Materialia, vol.56, issue.18, pp.5158-5167, 2008.

B. J. Makenas and H. K. Birnbaum, Phase changes in the niobium-hydrogen system I: Accommodation effects during hydride precipitation, Acta Metallurgica, vol.28, issue.7, pp.979-988, 1980.

H. Verhoff, Hydrogen related material problems, editor, Hydrogen in Metals III: Properties and Applications, vol.73

D. F. Teter, I. M. Robertson, and H. K. Birnbaum, The effects of hydrogen on the deformation and fracture of ?-titanium, Acta Materialia, vol.49, issue.20, pp.4313-4323, 2001.

C. D. Beachem, A new model for hydrogen-assisted cracking (hydrogen "embrittlement")

, Metallurgical and Materials Transactions B, vol.3, issue.2, pp.441-455, 1972.

H. K. Birnbaum and P. Sofronis, Hydrogen-enhanced localized plasticity: a mechanism for hydrogen-related fracture, Materials Science and Engineering A, vol.176, issue.1, pp.191-202, 1994.

P. Sofronis, Y. Liang, and N. Aravas, Hydrogen induced shear localization of the plastic flow in metals and alloys, European Journal of Mechanics A, vol.20, issue.6, pp.857-872, 2001.

D. Delafosse and T. Magnin, Hydrogen induced plasticity in stress corrosion cracking of engineering systems, Engineering Fracture Mechanics, vol.68, issue.6, pp.693-729, 2001.

R. Kirchheim, Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background, Acta Materialia, vol.55, issue.15, pp.5129-5138, 2007.

R. Kirchheim, Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. II. Experimental evidence and consequences, Acta Materialia, vol.55, issue.15, pp.5139-5148, 2007.

E. O. Wollan, J. W. Cable, and W. C. Koehler, The hydrogen atom positions in face centered cubic nickel hydride, Journal of Physics and Chemistry of Solids, vol.24, issue.9, pp.1141-1143, 1963.

A. Metsue, A. Oudriss, and X. Feaugas, Hydrogen solubility and vacancy concentration in nickel single crystals at thermal equilibrium: New insights from statistical mechanics and ab initio calculations, Journal of Alloys and Compounds, vol.656, pp.555-567, 2016.

E. Wimmer, W. Wolf, J. Sticht, P. Saxe, C. B. Geller et al., Temperature-dependent diffusion coefficients from ab initio computations: hydrogen, deuterium, and tritium in nickel, Physical Review B, vol.77, p.134305, 2008.

Y. W. You, X. S. Kong, X. B. Wu, Y. C. Xu, Q. F. Fang et al., Dissolving, trapping and detrapping mechanisms of hydrogen in BCC and FCC transition metals, AIP Advances, vol.3, issue.1, p.12118, 2013.

R. Nazarov, T. Hickel, and J. Neugebauer, Ab initio study of H-vacancy interactions in FCC metals: Implications for the formation of superabundant vacancies, Physical Review B, vol.89, p.144108, 2014.

D. Connétable, Y. Wang, and D. Tanguy, Segregation of hydrogen to defects in nickel using first-principles calculations: the case of self-interstitials and cavities, Journal of Alloys and Compounds, vol.614, pp.211-220, 2014.

R. Matsumoto, M. Sera, and N. Miyazaki, Hydrogen concentration estimation in metals at finite temperature using first-principles calculations and vibrational analysis, Computational Materials Science, vol.91, pp.211-222, 2014.

Y. Fukai, Y. Shizuku, and Y. Kurokawa, Superabundant vacancy formation in Ni-H alloys, Journal of Alloys and Compounds, vol.329, issue.1, pp.195-201, 2001.

S. Harada, S. Yokota, Y. Ishii, Y. Shizuku, M. Kanazawa et al., A relation between the vacancy concentration and hydrogen concentration in the Ni-H, Co-H and Pd-H systems, Proceedings of the 9th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications (MH2004), pp.247-251, 2005.

N. Z. Carr and R. B. Mclellan, Hydrogen-vacancy interactions in Ni-H solid solutions, Journal of Physics and Chemistry of Solids, vol.67, issue.8, pp.1797-1802, 2006.

A. Oudriss, J. Creus, J. Bouhattate, C. Savall, B. Peraudeau et al., The diffusion and trapping of hydrogen along the grain boundaries in polycrystalline nickel, Scripta Materialia, vol.66, issue.1, pp.37-40, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01892727

R. Kirchheim, Interaction of hydrogen with dislocations in palladium-I. Activity and diffusivity and their phenomenological interpretation, Acta Metallurgica, vol.29, issue.5, pp.835-843, 1981.

P. Sofronis and H. K. Birnbaum, Mechanics of the hydrogen-dislocation-impurity interactions-I. increasing shear modulus, Journal of the Mechanics and Physics of Solids, vol.43, issue.1, pp.49-90, 1995.

Y. Tang and J. A. El-awady, Atomistic simulations of the interactions of hydrogen with dislocations in FCC metals, Physical Review B, vol.86, p.174102, 2012.

M. Wen, S. Fukuyama, and K. Yokogawa, Cross-slip process in FCC nickel with hydrogen in a stacking fault: an atomistic study using the embedded-atom method, Physical Review B, vol.75, p.144110, 2007.

J. Pezold, L. Lymperakis, and J. Neugebeauer, Hydrogen-enhanced local plasticity at dilute bulk H concentrations: The role of H-H interactions and the formation of local hydrides, Acta Materialia, vol.59, issue.8, pp.2969-2980, 2011.

J. P. Chateau, D. Delafosse, and T. Magnin, Numerical simulations of hydrogen-dislocation interactions in FCC stainless steels.: part I: Hydrogen-dislocation interactions in bulk crystals, Acta Materialia, vol.50, issue.6, pp.1507-1522, 2002.

J. P. Chateau, D. Delafosse, and T. Magnin, Numerical simulations of hydrogen-dislocation interactions in FCC stainless steels.: part II: Hydrogen effects on crack tip plasticity at a stress corrosion crack, Acta Materialia, vol.50, issue.6, pp.1523-1538, 2002.

M. Maxelon, A. Pundt, W. Pyckhout-hintzen, J. Barker, and R. Kirchheim, Interaction of hydrogen and deuterium with dislocations in palladium as observed by small angle neutron scattering, Acta Materialia, vol.49, issue.14, pp.2625-2634, 2001.

Y. Yagodzinskyy and H. Hänninen, Hydrogen-dislocation interactions and their role in help mechanism of hydrogen embrittlement, 11th International Conference on Fracture, vol.5, 2005.

E. Clouet, The vacancy-edge dislocation interaction in FCC metals: a comparison between atomic simulations and elasticity theory, Acta Materialia, vol.54, issue.13, pp.3543-3552, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00084518

E. Clouet, Dislocation core field. I. Modeling in anisotropic linear elasticity theory, Physical Review B, vol.84, p.224111, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00654126

A. Barnoush and H. Vehoff, Electrochemical nanoindentation: a new approach to probe hydrogen/deformation interaction, Scripta Materialia, vol.55, issue.2, pp.195-198, 2006.

A. Barnoush and H. Vehoff, In situ electrochemical nanoindentation of a nickel (111) single crystal: hydrogen effect on pop-in behaviour, International Journal of Materials Research, vol.97, issue.9, pp.1224-1229, 2006.

A. Barnoush and H. Vehoff, In situ electrochemical nanoindentation: a technique for local examination of hydrogen embrittlement, Corrosion Science, vol.50, issue.1, pp.259-267, 2008.

A. Barnoush and H. Vehoff, Recent developments in the study of hydrogen embrittlement: Hydrogen effect on dislocation nucleation, Acta Materialia, vol.58, issue.16, pp.5274-5285, 2010.

A. Barnoush, Hydrogen embrittlement, revisited by in situ electrochemical nanoindentation, 2007.

A. C. Fischer-cripps, The IBIS Handbook of Nanoindentation, 2005.

G. Girardin, C. Huvier, D. Delafosse, and X. Feaugas, Correlation between dislocation organization and slip bands: TEM and AFM investigations in hydrogen-containing nickel and nickel-chromium, Acta Materialia, vol.91, pp.141-151, 2015.
URL : https://hal.archives-ouvertes.fr/emse-01998818

S. Wang, A. Nagao, K. Edalati, Z. Horita, and I. M. Robertson, Influence of hydrogen on dislocation self-organization in Ni, Acta Materialia, vol.135, pp.96-102, 2017.

T. Magnin, C. Bosch, K. Wolski, and D. Delafosse, Cyclic plastic deformation behaviour of Ni single crystals oriented for single slip as a function of hydrogen content, Materials Science and Engineering A, vol.314, issue.1, pp.7-11, 2001.

D. Delafosse, Hydrogen effects on the plasticity of face centred cubic (FCC) crystals, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: Mechanisms, Modelling and Future Developments, vol.2, pp.247-285, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00989385

H. El-alami, Influence de la déformation plastique sur la réactivité du nickel dans la Réac-tion d'Evolution de l'Hydrogène en milieu acide : approche cinétique et thermodynamique, 2007.

C. Lekbir, Effet de la déformation plastique du nickel monocristallin sur l'état d'équilibre de l'hydrogène en surface et subsurface, 2012.

Y. Furukawa, K. Nakajima, and K. Sato, Advances in Crystal Growth Research, 2001.

M. Manutchehr-danai, Dictionary of Gems and Gemology, 2013.

S. Frappart, Des éléments de compréhension sur les mécanimes de transport et de sé-grégation de l'hydrogène dans les aciers martensitiques trempés et revenus à haute limite d'élasticité, 2011.

K. A. Lee and R. B. Mclellan, The diffusivity of hydrogen in nickel at low temperatures, Scripta Metallurgica, vol.18, issue.8, pp.859-861, 1984.

N. Ansari and R. Balasubramaniam, Determination of hydrogen diffusivity in nickel by subsurface microhardness profiling, Materials Science and Engineering A, vol.293, issue.1, pp.292-295, 2000.

J. Li, A. Oudriss, A. Metsue, J. Bouhattate, and X. Feaugas, Anisotropy of hydrogen diffusion in nickel single crystals: the effects of self-stress and hydrogen concentration on diffusion, Scientific Reports, vol.7, p.45041, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01892929

E. Akiyama and S. Li, Electrochemical hydrogen permeation tests under galvanostatic hydrogen charging conditions conventionally used for hydrogen embrittlement study, Corrosion Reviews, vol.34, pp.103-112, 2015.

E. Schmid and W. Boas, Plasticity of Crystals, vol.54, 1950.

G. Bouteau, Etude de la microsctructure et de la concentration de lacunes dans le nickel monocristallin déformé en fatigue, 2013.

I. M. Ghermaoui, K. Madanu, A. Oudriss, and X. Feaugas, Plastic deformation of (001) nickel single crystal oriented for multi-slips: some effects of hydrogen solute, 2018.

M. Karlik and B. Jouffrey, Etude des métaux par microscopie électronique en transmission (MET) -microscope, échantillons et diffraction, 2008.

D. B. Williams and C. B. Carter, Transmission Electron Microscopy. Springer Science+Busniess Media, 2009.

D. Wan, A. Deng, and . Barnoush, Hydrogen embrittlement effect observed by in-situ hydrogen plasma charging on a ferritic alloy, Scripta Materialia, vol.151, pp.24-27, 2018.
DOI : 10.1016/j.scriptamat.2018.03.038

R. Zauter, F. Petry, M. Bayerlein, C. Sommer, H. Christ et al., Electron channelling contrast as a supplementary method for microstructural investigations in deformed metals, Philosophical Magazine A, vol.66, issue.3, pp.425-436, 1992.
DOI : 10.1080/01418619208201567

A. Schwab, J. Bretschneider, C. Buque, C. Blochwitz, and C. Holste, Application of electron channelling contrast to the investigation of strain localization effects in cyclically deformed FCC crystals, Philosophical Magazine Letters, vol.74, issue.6, pp.449-454, 1996.

D. Melisova, B. Weiss, and R. Stickler, Nucleation of persistent slip bands in Cu single crystals under stress controlled cycling, Scripta Materialia, vol.36, issue.9, pp.1061-1066, 1997.

S. Amelinckx, The Direct Observation of Dislocations, volume 6 of Solid state physics: Supplement, 1964.

I. Gutierrez-urrutia and D. Raabe, Dislocation density measurement by electron channeling contrast imaging in a scanning electron microscope, Scripta Materialia, vol.66, issue.6, pp.343-346, 2012.

E. E. Underwood, Quantitative stereology for microstructural analysis, Microstructural Analysis: Tools and Techniques, pp.35-66
DOI : 10.1007/978-1-4615-8693-7_3

U. S. Springer, , 1973.

H. Haddou, Influence de la taille de grain et de l'énergie de défaut d'empilement sur l'état de contraintes internes développé au cours de la déformation plastique en traction simple et en fatigue oligocyclique (Alliages C. F. C.). PhD thesis, 2003.

O. Macielak and P. Aubert, Mesure de dureté par nano-indentation. Techniques de l'ingénieur, 1(NM7200), 2007.

G. Stenerud, R. Johnsen, J. S. Olsen, J. He, and A. Barnoush, Effect of hydrogen on dislocation nucleation in alloy 718, International Journal of Hydrogen Energy, vol.42, issue.24, pp.15933-15942, 2017.

Z. Wang, Influences of sample preparation on the indentation size effect and nanoindentation pop-in on nickel, 2012.

T. Hajilou, Y. Deng, B. R. Rogne, N. Kheradmand, and A. Barnoush, In situ electrochemical microcantilever bending test: a new insight into hydrogen enhanced cracking, Scripta Materialia, vol.132, pp.17-21, 2017.

T. L. Li, Y. F. Gao, H. Bei, and E. P. George, Indentation Schmid factor and orientation dependence of nanoindentation pop-in behavior of NiAl single crystals, Journal of the Mechanics and Physics of Solids, vol.59, issue.6, pp.1147-1162, 2011.

P. Delobelle, H. Haddou, and X. Feaugas, Mise en évidence par la technique de nanoindentation de différents effets de microstructure dans le nickel mono et polycristallin, Matériaux, 2002.

W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, vol.7, issue.6, pp.1564-1583, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01518596

W. C. Oliver and G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal of Materials Research, vol.19, issue.1, pp.3-20, 2004.

J. J. Vlassak and W. D. Nix, Measuring the elastic properties of anisotropic materials by means of indentation experiments, Journal of the Mechanics and Physics of Solids, vol.42, issue.8, pp.1223-1245, 1994.

H. Hertz, Ueber die berührung fester elasticher körper, Journal für die Reine und Angewandte Mathematik, vol.92, pp.156-171, 1881.

N. Gao, M. J. Starink, and T. G. Langdon, Using differential scanning calorimetry as an analytical tool for ultrafine grained metals processed by severe plastic deformation, Materials Science and Technology, vol.25, issue.6, pp.687-698, 2009.

J. Gubicza, S. V. Dobatkin, and E. Khosravi, Reduction of vacancy concentration during storage of severely deformed Cu, Materials Science and Engineering A, vol.527, issue.21, pp.6102-6104, 2010.

A. Metsue, A. Oudriss, J. Bouhattate, and X. Feaugas, Contribution of the entropy on the thermodynamic equilibrium of vacancies in nickel, The Journal of Chemical Physics, vol.140, issue.10, 2014.

J. Grenet and B. Legendre, Analyse calorimétrie différentielle à balayage. Techniques de l'ingénieur, 1(P1205), 2010.

D. A. Hughes and N. Hansen, Microstructure and strength of nickel at large strains, Acta Materialia, vol.48, issue.11, pp.2985-3004, 2000.
DOI : 10.1016/s1359-6454(00)00082-3

URL : http://orbit.dtu.dk/en/publications/microstructure-and-strength-of-nickel-at-large-strains(c8212a3f-fb32-48e6-a85f-c8d889353357).html

A. Oudriss and X. Feaugas, Length scales and scaling laws for dislocation cells developed during monotonic deformation of (001) nickel single crystal, International Journal of Plasticity, vol.78, pp.187-202, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01840013

W. W. Gerberich, S. K. Venkataraman, H. Huang, S. E. Harvey, and D. L. Kohlstedt, The injection of plasticity by millinewton contacts, Acta Metallurgica et Materialia, vol.43, issue.4, pp.1569-1576, 1995.

J. Scherer, B. M. Ocko, and O. M. Magnussen, Structure, dissolution, and passivation of Ni(111) electrodes in sulfuric acid solution: an in situ STM, X-ray scattering, and electrochemical study, Electrochimica Acta, vol.48, issue.9, pp.1169-1191, 2003.

D. F. Bahr, D. E. Kramer, and W. W. Gerberich, Non-linear deformation mechanisms during nanoindentation, Acta Materialia, vol.46, issue.10, pp.3605-3617, 1998.
DOI : 10.1016/s1359-6454(98)00024-x

T. A. Michalske and J. E. Houston, Dislocation nucleation at nano-scale mechanical contacts, Acta Materialia, vol.46, issue.2, pp.391-396, 1998.
DOI : 10.1016/s1359-6454(97)00270-x

A. Barnoush, Correlation between dislocation density and nanomechanical response during nanoindentation, Acta Materialia, vol.60, issue.3, pp.1268-1277, 2012.
DOI : 10.1016/j.actamat.2011.11.034

W. D. Nix and H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, Journal of the Mechanics and Physics of Solids, vol.46, issue.3, pp.411-425, 1998.

J. G. Swadener, E. P. George, and G. M. Pharr, The correlation of the indentation size effect measured with indenters of various shapes, Journal of the Mechanics and Physics of Solids, vol.50, issue.4, pp.681-694, 2002.

G. Dlubek, O. Brümmer, and E. Hensel, Positron annihilation investigation for an estimation of the dislocation density and vacancy concentration of plastically deformed polycrystalline Ni of different purity, Physica Status Solidi A, vol.34, issue.2, pp.737-746, 1976.

U. F. Kocks, Laws for work-hardening and low-temperature creep, Journal of Engineering Materials and Technology, vol.98, issue.1, pp.76-85, 1976.

L. Kubin, B. Devincre, and T. Hoc, Toward a physical model for strain hardening in FCC crystals, 14th International Conference on the Strength of Materials, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00276790

J. Polák, Electrical resistivity of cyclically deformed copper, Czechoslovak Journal of Physics B, vol.19, issue.3, pp.315-322, 1969.

S. K. Lawrence, B. P. Somerday, and R. A. Karnesky, Elastic property dependence on mobile and trapped hydrogen in Ni-201, Journal of the Minerals, Metals & Materials Society, vol.69, issue.1, pp.45-50, 2016.

Y. Gu and J. A. El-awady, Quantifying the effect of hydrogen on dislocation dynamics: A three-dimensional discrete dislocation dynamics framework, Journal of the Mechanics and Physics of Solids, vol.112, pp.491-507, 2018.

G. Girardin and D. Delafosse, Measurement of the saturated dislocation pinning force in hydrogenated nickel and nickel base alloys, Scripta Materialia, vol.51, issue.12, pp.1177-1181, 2004.

H. Bei, Y. Z. Xia, R. I. Barabash, and Y. F. Gao, A tale of two mechanisms: Strain-softening versus strain-hardening in single crystals under small stressed volumes, Scripta Materialia, vol.110, pp.48-52, 2016.

Y. Gao and H. Bei, Strength statistics of single crystals and metallic glasses under small stressed volumes, Progress in Materials Science, vol.82, pp.118-150, 2016.

S. K. Lawrence, Y. Yagodzinskyy, H. Hänninen, E. Korhonen, F. Tuomisto et al., Effects of grain size and deformation temperature on hydrogenenhanced vacancy formation in Ni alloys, Acta Materialia, vol.128, pp.218-226, 2017.

M. Wen, A. Barnoush, and K. Yokogawa, Calculation of all cubic single-crystal elastic constants from single atomistic simulation: Hydrogen effect and elastic constants of nickel, Computer Physics Communications, vol.182, issue.8, pp.1621-1625, 2011.

E. Lunarska, A. Zielinski, and M. Smialowski, Effect of hydrogen on shear modulus of polycrystalline ?-iron, Acta Metallurgica et Materialia, vol.25, issue.3, pp.305-308, 1977.

D. Psiachos, T. Hammerschmidt, and R. Drautz, Ab initio study of the modification of elastic properties of ?-iron by hydrostatic strain and by hydrogen interstitials, Acta Materialia, vol.59, issue.11, pp.4255-4263, 2011.

G. Hachet, A. Metsue, A. Oudriss, and X. Feaugas, Influence of hydrogen on the elastic properties of nickel single crystal: a numerical and experimental investigation, Acta Materialia, vol.148, pp.280-288, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01892911

J. L. Farvacque, Initiation à la théorie quantique des solides. Ellipses Marketing, 2009.

A. R. Oganov, Computer simulation studies of minerals, 2002.

P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Physical Review, vol.136, issue.3B, pp.864-871, 1964.

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review, vol.140, issue.4A, pp.1133-1138, 1965.

D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Physical Review Letters, vol.45, pp.566-569, 1980.

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation, Physical Review B, vol.46, pp.6671-6687, 1992.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters, vol.77, issue.18, pp.3865-3868, 1996.

L. Goerigk and S. Grimme, A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions, Physical Chemistry Chemical Physics, vol.13, pp.6670-6688, 2011.

I. Suh, H. Ohta, and Y. Waseda, High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction, Journal of Materials Science, vol.23, issue.2, pp.757-760, 1988.

C. Kittel, Introduction to Solid State Physics, 1996.

A. J. Hatt, B. C. Melot, and S. Narasimhan, Harmonic and anharmonic properties of Fe and Ni: thermal expansion, exchange-correlation errors, and magnetism, Physical Review B, vol.82, issue.13, 2010.

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B, vol.13, issue.12, pp.5188-5192, 1976.

M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Reviews of Modern Physics, vol.64, pp.1045-1097, 1992.

P. E. Blöchl, Projector augmented-wave method, Physical Review B, vol.50, issue.24, pp.17953-17979, 1994.

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmentedwave method, Physical Review B, vol.59, issue.3, pp.1758-1775, 1999.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al.,

R. Fratesi, U. Gebauer, C. Gerstmann, A. Gougoussis, M. Kokalj et al., Quantum espresso: A modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter, vol.21, p.395502, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00717147

D. C. Wallace, Thermodynamics of Crystals, 1972.

O. Gülseren and R. E. Cohen, High-pressure thermoelasticity of body-centered-cubic tantalum, Physical Review B, vol.65, p.64103, 2002.

M. T. Dove, Structure and dynamics : an atomic view of materials, vol.1, 2003.

A. Metsue and T. Tsuchiya, Lattice dynamics and thermodynamic properties of (Mg,Fe 2+ ) SiO 3 postperovskite, Journal of Geophysical Research: Solid Earth, vol.116, issue.8, 2011.

D. Alfè, Phon: A program to calculate phonons using the small displacement method, Computer Physics Communications, vol.180, issue.12, pp.2622-2633, 2009.

R. E. Watson and M. Weinert, Contribution of electronic excitations to the entropy of crystals: the relative stabilities of the HCP, FCC, and BCC structures among the transition metals, Physical Review B, vol.30, issue.4, pp.1641-1645, 1984.

O. Eriksson, J. M. Wills, and D. Wallace, Electronic, quasiharmonic, and anharmonic entropies of transition metals, Physical Review B, vol.46, pp.5221-5228, 1992.

A. Satta, F. Willaime, and S. De-gironcoli, Vacancy self-diffusion parameters in tungsten: finite electron-temperature LDA calculations, Physical Review B, vol.57, p.11184, 1998.

A. Satta, F. Willaime, and S. De-gironcoli, First-principles study of vacancy formation and migration energies in tantalum, Physical Review B, vol.60, p.7001, 1999.

F. Willaime, A. Satta, M. Nastar, and O. L. Bacq, Electronic structure calculations of vacancy parameters in transition metals: impact on the BCC self-diffusion anomaly, International Journal of Quantum Chemistry, vol.77, issue.6, pp.927-939, 2000.

J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford science publications, 1957.

F. Birch, Finite elastic strain of cubic crystals, Physical Review, vol.71, issue.11, pp.809-824, 1947.

P. Vinet, J. R. Smith, J. Ferrante, and J. H. Rose, Temperature effects on the universal equation of state of solids, Physical Review B, vol.35, issue.4, pp.1945-1953, 1987.

M. J. Mehl, J. E. Osburn, D. A. Papaconstantopoulos, and B. M. Klein, Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations, Physical Review B, vol.41, issue.15, pp.10311-10323, 1990.

G. A. Alers, J. R. Neighbours, and H. Sato, Temperature dependent magnetic contributions to the high field elastic constants of nickel and an Fe-Ni alloy, Journal of Physics and Chemistry of Solids, vol.13, issue.1-2, pp.40-55, 1960.

Y. Wang, J. J. Wang, H. Zhang, V. R. Manga, S. L. Shang et al., A firstprinciples approach to finite temperature elastic constants, Journal of Physics: Condensed Matter, vol.22, issue.22, p.225404, 2010.

G. F. Davies, Effective elastic moduli under hydrostatic stress-I. Quasi-harmonic theory, Journal of Physics and Chemistry of Solids, vol.35, issue.11, pp.1513-1520, 1974.

J. Turley and G. Sines, The anisotropy of Young's modulus, shear modulus and Poisson's ratio in cubic materials, Journal of Physics D, vol.4, issue.2, p.264, 1971.

H. M. Ledbetter and R. P. Reed, Elastic properties of metals and alloys, I. Iron, nickel, and iron-nickel alloys, Journal of Physical and Chemical Reference Data, vol.2, issue.3, pp.531-618, 1973.

A. Dewaele, M. Torrent, P. Loubeyre, and M. Mezouar, Compression curves of transition metals in the mbar range: Experiments and projector augmented-wave calculations, Physical Review B, vol.78, issue.10, p.104102, 2008.

M. Shimizu, Forced magnetostriction, magnetic contributions to bulk modulus and thermal expansion and pressure dependence of Curie temperature in iron, cobalt and nickel, Journal of the Physical Society of Japan, vol.44, issue.3, pp.792-800, 1978.

K. Lejaeghere, V. V. Speybroeck, G. V. Oost, and S. Cottenier, Error estimates for solidstate density-functional theory predictions: An overview by means of the ground-state elemental crystals, Critical Reviews in Solid State and Materials Sciences, vol.39, issue.1, pp.1-24, 2014.

M. Kresch, O. Delaire, R. Stevens, J. Y. Lin, and B. Fultz, Neutron scattering measurements of phonons in nickel at elevated temperatures, Physical Review B, vol.75, issue.10, 2007.

Z. Zeng, C. Hu, L. Cai, and F. Jing, Ab initio study of lattice dynamics and thermal equation of state of ni, Physica B, vol.407, issue.3, pp.330-334, 2012.

Y. S. Touloukian, Thermal expansion: metallic elements and alloys. Thermophysical properties of matter, 1975.

C. Y. Ho and R. E. Taylor, Thermal Expansion of Solids. CINDAS data series on material properties, 1998.

Y. Wang, Z. Liu, and L. Chen, Thermodynamic properties of Al, Ni, NiAl, and Ni 3 Al from first-principles calculations, Acta Materialia, vol.52, issue.9, pp.2665-2671, 2004.

R. B. Mclellan and W. A. Oates, The solubility of hydrogen in rhodium, ruthenium, iridium and nickel, Acta Metallurgica et Materialia, vol.21, issue.3, pp.181-185, 1973.

J. E. Angelo, N. R. Moody, and M. I. Baskes, Trapping of hydrogen to lattice defects in nickel. Modelling and Simulation in, Materials Science and Engineering, vol.3, issue.3, p.289, 1995.

S. Harada and S. Tamaki, Elastic constants and thermal expansion coefficient of hydrogenated Pd alloys, Journal of the Physical Society of Japan, vol.54, issue.1, pp.168-174, 1985.

W. Li, J. Xue, J. Wang, and H. Duan, Mechanical properties of self-irradiated single-crystal copper, Chinese Physics B, vol.23, issue.3, 2014.

W. Cai, R. B. Sills, D. M. Barnett, and W. D. Nix, Modeling a distribution of point defects as misfitting inclusions in stressed solids, Journal of the Mechanics and Physics of Solids, vol.66, pp.154-171, 2014.

B. Romanowski, D. Chrobak, J. Räisänen, and R. Nowak, Elasticity and Debye temperature of defected FCC crystals (AlCu 3 , Al, Cu): Molecular dynamics and first-principles calculations, Computational Materials Science, vol.109, pp.194-199, 2015.

K. Lounis, H. Zenia, E. H. Megchiche, and C. Mijoule, Stability of vacancy clusters in nickel: a molecular statics study, Computational Materials Science, vol.118, pp.279-287, 2016.

F. C. Larché and J. W. Cahn, Overview no. 41 The interactions of composition and stress in crystalline solids, Acta Metallurgica et Materialia, vol.33, issue.3, pp.331-357, 1985.

S. Yoshioki, The lattice distortion around the divacancy in cubic metals using the method of lattice statics, Journal of Physics F, vol.6, issue.6, pp.957-963, 1976.

B. P. Uberuaga, R. G. Hoagland, A. F. Voter, and S. M. Valone, Direct transformation of vacancy voids to stacking fault tetrahedra, Physical Review Letters, vol.99, issue.13, 2007.

M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, 1989.

S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of Computational Physics, vol.117, issue.1, pp.1-19, 1995.

D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications. Computational science series 1, 2002.

L. Verlet, Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Physical Review, vol.159, pp.98-103, 1967.

W. Cai, J. Li, and S. Yip, 1.09 -molecular dynamics, Comprehensive Nuclear Materials, pp.249-265, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00024110

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Physics, vol.52, issue.2, pp.255-268, 1984.

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, vol.31, pp.1695-1697, 1985.

J. E. Jones, On the determination of molecular fields. -II. From the equation of state of a gas, Proceedings of the Royal Society of London A, vol.106, issue.738, pp.463-477, 1924.

W. Ko, J. Shim, and B. Lee, Atomistic modeling of the Al-H and Ni-H systems, Journal of Materials Research, vol.26, pp.1552-1560, 2011.

M. S. Daw and M. I. Baskes, Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals, Physical Review Letters, vol.50, pp.1285-1288, 1983.

M. S. Daw and M. I. Baskes, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals, Physical Review B, vol.29, pp.6443-6453, 1984.

S. P. Chen, D. J. Srolovitz, and A. F. Voter, Computer simulation on surfaces and [001] symmetric tilt grain boundaries in Ni, Al, and Ni 3 Al, Journal of Materials Research, vol.4, issue.1, pp.62-77, 1989.

S. P. Chen, A. F. Voter, R. C. Albers, A. M. Boring, and P. J. Hay, Investigation of the effects of boron on Ni 3 Al grain boundaries by atomistic simulations, Journal of Materials Research, vol.5, issue.5, pp.955-970, 1990.

M. I. Baskes, X. Sha, J. E. Angelo, and N. R. Moody, Trapping of hydrogen to lattice defects in nickel. Modelling and Simulation in, Materials Science and Engineering, vol.5, issue.6, p.651, 1997.

M. I. Baskes, Modified embedded-atom potentials for cubic materials and impurities, Physical Review B, vol.46, pp.2727-2742, 1992.

B. Lee, J. Shim, and M. I. Baskes, Pb based on first and second nearest-neighbor modified embedded atom method, Physical Review B, vol.68, p.144112, 2003.

A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Modelling and Simulation in Materials Science and Engineering, vol.18, p.15012, 2010.

G. Tichy and U. Essmann, Modelling of edge dislocation dipoles in face-centred-cubic lattices, Philosophical Magazine B, vol.60, issue.4, pp.503-512, 1989.

J. Chang, W. Cai, V. V. Bulatov, and S. Yip, Molecular dynamics simulations of motion of edge and screw dislocations in a metal, Computational Materials Science, vol.23, issue.1, pp.111-115, 2002.

D. Rodney, L. Ventelon, E. Clouet, L. Pizzagalli, and F. Willaime, Ab initio modeling of dislocation core properties in metals and semiconductors, Acta Materialia, vol.124, pp.633-659, 2017.

E. Polak and G. Ribiere, Note sur la convergence de méthodes de directions conjuguées, ESAIM: Mathematical Modelling and Numerical Analysis -Modélisation Mathématique et Analyse Numérique, vol.3, pp.35-43, 1969.

T. C. Ting and T. Chen, Poisson's ratio for anisotropic elastic materials can have no bounds, The Quarterly Journal of Mechanics and Applied Mathematics, vol.58, issue.1, pp.73-82, 2005.

K. M. Knowles and P. R. Howie, The directional dependence of elastic stiffness and compliance shear coefficients and shear moduli in cubic materials, Journal of Elasticity, vol.120, issue.1, pp.87-108, 2015.

P. Veyssière and Y. Chiu, Equilibrium and passing properties of dislocation dipoles, Philosophical Magazine, vol.87, issue.23, pp.3351-3372, 2007.

H. S. Chen, J. J. Gilman, and A. K. Head, Dislocation multipoles and their role in strainhardening, Journal of Applied Physics, vol.35, issue.8, pp.2502-2514, 1964.

D. Kuhlmann-wilsdorf, Dislocation behavior in fatigue IV. Quantitative interpretation of friction stress and back stress derived from hysteresis loops, Materials Science and Engineering, vol.39, issue.2, pp.231-245, 1979.

D. Kuhlmann-wilsdorf, Theory of plastic deformation: -properties of low energy dislocation structures, Materials Science and Engineering: A, vol.113, pp.1-41, 1989.

R. B. Sills and W. Cai, Solute drag on perfect and extended dislocations, Philosophical Magazine, vol.96, issue.10, pp.895-921, 2016.

R. B. Sills and W. Cai, Free energy change of a dislocation due to a Cottrell atmosphere, Philosophical Magazine, vol.98, issue.16, pp.1491-1510, 2018.

R. L. Fleischer, Substitutional solution hardening, Acta Metallurgica, vol.11, issue.3, pp.203-209, 1963.

R. Labusch, A statistical theory of solid solution hardening, Physica Status Solidi B, vol.41, issue.2, pp.659-669, 1970.

A. Metsue, A. Oudriss, G. Hachet, and X. Feaugas, , 2018.

X. Zhou, B. Ouyang, W. A. Curtin, and J. Song, Atomistic investigation of the influence of hydrogen on dislocation nucleation during nanoindentation in Ni and Pd, Acta Materialia, vol.116, pp.364-369, 2016.

W. Voigt, Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper, Annalen der Physik, vol.274, issue.12, pp.573-587, 1889.

A. Reuss, Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbe-dingung für einkristalle, ZAMM -Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, vol.9, issue.1, pp.49-58, 1929.

R. Hill, The elastic behaviour of a crystalline aggregate, Proceedings of the Physical Society. Section A, vol.65, issue.5, p.349, 1952.

L. P. Kubin, Plastic Deformation and Fracture of Materials, Materials Science and Technology, vol.6, 1993.

R. W. Cahn and P. Haasen, Physical Metallurgy, vol.3, 1996.

S. Patinet and L. Proville, Depinning transition for a screw dislocation in a model solid solution, Physical Review B, vol.78, p.104109, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00336032

K. Zhao, J. He, A. E. Mayer, and Z. Zhang, Effect of hydrogen on the collective behavior of dislocations in the case of nanoindentation, Acta Materialia, vol.148, pp.18-27, 2018.

P. Haasen, Dislocations in metallurgy, Dislocations in Solids, vol.4, pp.155-189, 1979.

A. Tehranchi, B. Yin, and W. A. Curtin, Softening and hardening of yield stress by hydrogen-solute interactions, Philosophical Magazine, vol.97, issue.6, pp.400-418, 2017.

C. Gaudin, Etude des mécanismes associés au rochet cyclique d'un acier austénitique AISI 316L, 2002.

S. Li, Y. Li, Y. Lo, T. Neeraj, R. Srinivasan et al., The interaction of dislocations and hydrogen-vacancy complexes and its importance for deformation-induced proto nano-voids formation in ?-Fe, International Journal of Plasticity, vol.74, pp.175-191, 2015.

A. Metsue, A. Oudriss, and X. Feaugas, Trapping/detrapping kinetic rates of hydrogen around a vacancy in nickel and some consequences on the hydrogen-vacancy clusters thermodynamic equilibrium, Computational Materials Science, vol.151, pp.144-152, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01840002