Information spotting in huge repositories of scanned document images

Abstract : This work aims at developing a generic framework which is able to produce camera-based applications of information spotting in huge repositories of heterogeneous content document images via local descriptors. The targeted systems may take as input a portion of an image acquired as a query and the system is capable of returning focused portion of database image that match the query best. We firstly propose a set of generic feature descriptors for camera-based document images retrieval and spotting systems. Our proposed descriptors comprise SRIF, PSRIF, DELTRIF and SSKSRIF that are built from spatial space information of nearest keypoints around a keypoints which are extracted from centroids of connected components. From these keypoints, the invariant geometrical features are considered to be taken into account for the descriptor. SRIF and PSRIF are computed from a local set of m nearest keypoints around a keypoint. While DELTRIF and SSKSRIF can fix the way to combine local shape description without using parameter via Delaunay triangulation formed from a set of keypoints extracted from a document image. Furthermore, we propose a framework to compute the descriptors based on spatial space of dedicated keypoints e.g SURF or SIFT or ORB so that they can deal with heterogeneous-content camera-based document image retrieval and spotting. In practice, a large-scale indexing system with an enormous of descriptors put the burdens for memory when they are stored. In addition, high dimension of descriptors can make the accuracy of indexing reduce. We propose three robust indexing frameworks that can be employed without storing local descriptors in the memory for saving memory and speeding up retrieval time by discarding distance validating. The randomized clustering tree indexing inherits kd-tree, kmean-tree and random forest from the way to select K dimensions randomly combined with the highest variance dimension from each node of the tree. We also proposed the weighted Euclidean distance between two data points that is computed and oriented the highest variance dimension. The secondly proposed hashing relies on an indexing system that employs one simple hash table for indexing and retrieving without storing database descriptors. Besides, we propose an extended hashing based method for indexing multi-kinds of features coming from multi-layer of the image. Along with proposed descriptors as well indexing frameworks, we proposed a simple robust way to compute shape orientation of MSER regions so that they can combine with dedicated descriptors (e.g SIFT, SURF, ORB and etc.) rotation invariantly. In the case that descriptors are able to capture neighborhood information around MSER regions, we propose a way to extend MSER regions by increasing the radius of each region. This strategy can be also applied for other detected regions in order to make descriptors be more distinctive. Moreover, we employed the extended hashing based method for indexing multi-kinds of features from multi-layer of images. This system are not only applied for uniform feature type but also multiple feature types from multi-layers separated. Finally, in order to assess the performances of our contributions, and based on the assessment that no public dataset exists for camera-based document image retrieval and spotting systems, we built a new dataset which has been made freely and publicly available for the scientific community. This dataset contains portions of document images acquired via a camera as a query. It is composed of three kinds of information: textual content, graphical content and heterogeneous content.
Document type :
Theses
Complete list of metadatas

Cited literature [143 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02122676
Contributor : Abes Star <>
Submitted on : Tuesday, May 7, 2019 - 2:48:08 PM
Last modification on : Wednesday, May 8, 2019 - 1:43:28 AM

File

2018Dang119967.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02122676, version 1

Collections

Citation

Quoc Bao Dang. Information spotting in huge repositories of scanned document images. Information Retrieval [cs.IR]. Université de La Rochelle, 2018. English. ⟨NNT : 2018LAROS024⟩. ⟨tel-02122676⟩

Share

Metrics

Record views

105

Files downloads

34